Huanhuan Yang

huan2yang@stu.edu.cn

No. 243 Daxue Road, Shantou, Guangdong, China 515063

Research Interests

- PDE-constrained Optimization: Parameter estimation, Optimal control, Experimental design
- Reduced Order Modeling: POD, CVT, Greedy reduced basis, Approximated Lax pairs
- Engineering: Cardiac electrophysiology, Climate modeling, Computational fluid dynamics, Acoustic modeling
- Others: Stochastic PDEs, Uncertainty quantification, CVT algorithms, HPC, Galerkin methods

Education

Emory University, USA - Ph.D. in Computational Mathematics - Advisor: Alessandro Veneziani	Aug 2010 – Sep 2015
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences - M.S. in Pure Mathematics	Sep 2007 – Jun 2010
Central China Normal University - B.S. in Mathematics	Sep 2003 – Jun 2007
	9.0015
 Fostabetoral Research Associate at <i>Fibrual State University</i> Stochastic optimal control using the conditional value-at-risk measure, Parallel reduced Fast CVT grid generation and its application to ocean modeling (current project) Supervisor: <i>Max Gunzburger</i> 	order modeling
Research Intern at Siemens Research Corporate, Princeton	May – Aug 2014

- Atrial electrophysiology modeling and its extension to whole heart modeling

- Data-driven atrial cell model reduction for fast and high-fidelity electrophysiology computations

- Mentor: Tiziano Passerini, Tommaso Mansi

Graduate Research Assistant at Emory University Aug 2012 – Sep 2015

- Conductivity parameter estimation of the cardiac bidomain model by a data assimilation procedure
- Computational cost reduction by the discrete empirical interpolation method, POD technique and the greedy reduced basis method

- Advisor: Alessandro Veneziani

Papers Prepared

- H. Yang, M. Gunzburger, L. Ju. Fast Spherical Centroidal Voronoi Mesh Generation: A Lloydpreconditioned LBFGS Method in Parallel, to be submitted.
- T. Cheng, H. Yang and S. Yang. Beltrami system and 1-quasiconformal embedding in higher dimensions, to be submitted.
- H. Yang and M. Gunzburger. Algorithms and analyses for stochastic optimization for turbofan noise reduction using parallel reduced-order modeling, Computer Methods in Applied Mechanics and Engineering, Volume 319, 2017, Pages 217–239.
- H. Yang and A. Veneziani. Efficient estimation of cardiac conductivities via POD-DEIM model order reduction, Applied Numerical Mathematics, Volume 115, 2017, Pages 180–199.
- H. Yang and A. Veneziani, Estimation of cardiac conductivities in ventricular tissue by a variational approach, Inverse Problems 31 (2015), no. 11, 115001.
- H. Yang, T. Passerini, T. Mansi, and D. Comaniciu, **Data-driven model reduction for fast, high fidelity** atrial electrophysiology computations, Functional Imaging and Modeling of the Heart, Lecture Notes in Computer Science, vol. 9126, 2015, pp. 466–474.
- L. Xu and H. Yang, On the generalizations of Denjoy-Wolff theorem. Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), no.4 1333-1337.

Projects in Progress

- Conservative Exponential Time Differencing scheme for ocean modeling, in progress.
- M. Gunzburger, J. Wang, H. Yang. Method and Analysis of reduced order modeling for time fractional differential equations, in progress.
- H. Yang, A. Veneziani. A posteriori error estimate for the greedy reduced basis approach on the cardiac monodomain model, in progress.
- A. Barone, A. Veneziani, H. Yang, F. Fenton, A. Gizzi, S. Filippi. Estimation of cardiac conductivities by a variational data assimilation approach: analysis and validation, in progress.

US Patent Application

• H. Yang, T. Passerini, B. Georgescu, T. Mansi, D. Comaniciu. System and Method for Patient-Specific Image-Based Simulation of Artial Electrophysiology. Patent App. No. US20160058520

Conference Minisymposium Organizer

- H. Yang, K. Pieper. Stochastic optimization with differential equations: methods and applications (minisymposium), SIAM Conference on Computational Science and Engineering, February 27–March 3, 2017.
- L. Bertagna, H. Yang, A. Veneziani. Inverse problems in cardiovascular mathematics (minisymposium), 3rd International Conference on Computational & Mathematical Biomedical Engineering, Hong Kong, December 16–18, 2013.

Talks

- "Stochastic optimal control for turbofan noise reduction with parallel reduced order modeling", SIAM Conference on Computational Science and Engineering, Atlanta, US, February 27–March 3, 2017.
- "Model and solution reduction techniques for patient-specific parameter estimation in cardiovascular mathematics: failure and success", Applied Inverse Problems Conference in 2015, Helsinki, Finland, May 25–29, 2015
- "Variational estimation of cardiac conductivities: Numerical issues, sensitivity analysis, computational cost reduction", 2nd International Workshop on Latest Advances in Cardiac Modeling, Munich, Germany, March 2015 (abstract)
- "Atrial Fibrillation Modeling and Data-Driven Cell Model Reduction", group meeting of Imaging & Computer Vision at Siemens Corporate Research, Princeton, Aug 2014
- "Order Reduced Methods for Cardiac Conductivities Estimation", 3rd International Conference on Computational & Mathematical Biomedical Engineering, Hong Kong, December 16-18, 2013
- "Variational Estimation of Cardiac Conductivities by a Data Assimilation Procedure", 12th U.S. National Congress on Computational Mechanics, Raleigh, North Carolina, US, July 22-25, 2013
- "Conductivity Parameters Estimation for the Cardiac Bidomain Model", 5th Annual JohnFest/SIAM Student Conference, Clemson, South Carolina, US, February 8-9, 2013

Teaching Activities

• Course Lecturer at Emory University	
Math 111 Calculus I	Summer 2015
Math 107 Intro. Probability and Statistics	Fall 2014
Math 111 Calculus I	Fall 2013
Math 111 Calculus I	Spring 2012
• Lab Lecturer at Emory University Math 116 Life Sciences Calculus II Math 116 Life Sciences Calculus II Math 115 Life Sciences Calculus I	Spring 2015 Spring 2013 Fall 2012

- Grader at Emory University
 Math 351 Partial Differential Equations, Math 352 PDEs in Action
 Math 221 Linear Algebra
 Math 212 Differential Equations
 Math 318 Complex Variables
- Volunteer Lecturer at Emory University Math 351 Partial Differential Equations Math 315 Numerical Analysis

Spring 2014 Fall 2011 Spring 2011 Fall 2010

for Prof. Alessandro Veneziani for Prof. Michele Benzi

Honors & Awards

Chris Schoottle Creducte Descende Award Fragmy University	0015
Chris Schoettie Graduate Research Award, Emory University	2013
Triple-A student, Chinese Academy of Sciences	2009
Graduate Scholarship, Chinese Academy of Sciences	2008
Outstanding Graduate, Central China Normal University	2007
Outstanding Students' Union Leader, Central China Normal University	2005
Triple-A student, Central China Normal University	2004, 2005, 2006
National First Class Scholarship, China	2004

Computer Skills

- Programming:
 - Operating systems: Linux (Ubuntu, Mint), Windows
 - Programming languages: C/C++, Java, Python
 - Parallel computing: Message Passing Interface (MPI), CUDA (GPU)
 - Version control software tool: Git, TortoiseSVN
 - Build automation tools: CMake, Visual Studio
 - Software debug/profiling: Gdb, Valgrind
- Scientific Computing Libraries:
 - Developer of the finite element library LifeV (www.lifev.org)
 - Expert user of the Trilinos, Suitesparse libraries.
- Scientific Tools: LifeV, FreeFem++, MFEM, Paraview, Netgen, Gmsh, Matlab, R, Mathematica

Last update: August 28, 2017